

Biophysical Chemistry 77 (1999) 49-68

Importance of long-range interactions in protein folding[†]

M. Michael Gromiha^{a,*}, S. Selvaraj^b

^aThe Institute of Physical and Chemical Research (RIKEN), Tsukuba Life Science Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan

^bDepartment of Physics, Bharathidasan University Tiruchirapalli 620 024 Tamil Nadu, India

Received 12 October 1998; received in revised form 13 January 1999; accepted 13 January 1999

Abstract

Long-range interactions play an active role in the stability of protein molecules. In this work, we have analyzed the importance of long-range interactions in different structural classes of globular proteins in terms of residue distances. We found that 85% of residues are involved in long-range contacts. The residues occurring in the range of 4–10 residues apart contribute more towards long-range contacts in all- α proteins while the range is 11–20 in all- β proteins. The hydrophobic residues Cys, Ile and Val prefer the 11–20 range and all other residues prefer the 4–10 range. The residues in all- β proteins have an average of 3–8 long-range contacts whereas the residues in other classes have 1–4 long-range contacts. Furthermore, the preference of residue pairs to the folding and stability will be discussed. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Long-range contacts; Structural class; Tertiary structure; Protein folding

1. Introduction

The folding of a polypeptide chain into a compact, unique three-dimensional structure is directed and stabilized by intra molecular interactions between the constituent amino acid residues along the chain. Based on crystal structural data various investigations have been carried out to understand the role of different interactions in

the folding and stability of globular proteins [1–8]. Furthermore, the importance of long-range interactions to the stability of proteins [9] and deriving potentials for fold recognition [10–12], the impact of local and non-local interactions on the folding of globular proteins [13], distance-dependent potentials [14] and relation between protein sequence and structure based on residue contacts [15] have been reported.

Recently, we have analyzed the influence of medium and long-range interactions in different structural classes of proteins and showed that while medium range interactions predominate in all- α class proteins, long-range interactions pre-

^{*}Corresponding author. Tel.: +81 298 36 9082; fax: +81 298 36 9080; e-mail: gromiha@rtc.riken.go.jp

[†]This article is dedicated to our teacher, Professor P.K. Ponnuswamy on the occasion of his 60th birthday.

dominate the all- β class [16]. Based on this fact, an evaluation of the performance of several secondary structure prediction methods revealed that all the methods predict the secondary structure of all- α proteins more accurately than other classes [17]. Furthermore, the influence of medium and long-range interactions and the importance of long-range interactions in terms of residue distances in $(\alpha/\beta)_8$ barrel proteins has been analyzed [18,19].

As residues which contribute towards longrange interactions need not be sequential neighbors and can exist far from the sequence, it is of interest to reveal the preference of residues towards these interactions in terms of intervening residue distances. Hence, in the present work, we have analyzed the role of long-range interactions in different structural classes of globular proteins in terms of residue distances.

2. Materials and methods

2.1. Database

The crystallographic data of 150 globular proteins taken from the Protein Data Bank (PDB) of Brookhaven National Laboratory [20,21] forms the source for our present study. The proteins selected were non-homologous and the structures were determined to a high resolution (resolution < 2.5 Å). The selected proteins are from four different structural classes, namely, all- α , all- β , $\alpha + \beta$ and α/β with a set of 35, 38, 35 and 42 proteins, respectively. The PDB codes for all the proteins used in the present study along with their fold and length are given in Table 1. We obtained the information about the structural class and the fold of all proteins from SCOP [22] and CATH [23] databases, and used the DSSP algorithm [24] for the assignment of secondary structures.

2.2. Computation of surrounding residues and long-range contacts

The computation of surrounding residues in a protein molecule has been described in our earlier articles [16,25]. The residues in a protein molecule are represented by their C_{α} atoms. Using the C_{α} coordinates, a sphere of radius 8 Å is fixed around each residue and the composition of surrounding residues associated with all the residues is calculated. It has been shown that the influence of each residue over the surrounding medium extends effectively only up to 8 Å [26–28].

For a given residue, the composition of surrounding residues is analyzed in terms of the location at the sequence level and the contributions from $<\pm 3$ residues are treated as short range contacts, ± 3 or ± 4 residues as medium range contacts and $>\pm 4$ residues are treated as long-range contacts [16,18].

2.3. Long-range contacts in different ranges of residue distances

The long-range contacts ($>\pm4$ residues) are further classified into several intervals with a step of 10 (4–10; 11–20; 21–30; 31–40; 41–50 and >50). The number of long-range contacts in each interval for all the residues in 150 globular proteins belonging to four different structural classes were computed. Also, the percentage of long-range contacts for all the proteins in each interval were calculated. Furthermore, the contribution of all the 20 amino acid residues towards the long-range interactions in different intervals were estimated for the entire database. Moreover, the preference of the 20 amino acid residues in helical and strand segments to form long-range contacts were delineated.

2.4. Preference of surrounding residues influenced by long-range contacts

The residues coming within a sphere of 8 Å for each residue in all the four structural classes and for the complete set of proteins (comprising of 29 420 residues) were computed and the residues which contribute towards long-range contacts are selected as described above. For a given residue, the preference of all the 20 amino acid residues to form long-range contacts is computed and the total preference for all the 20 amino acid residues

is estimated. The average preference of surrounding residues is computed using the expression:

$$\langle N \rangle_{ij} = \frac{\sum N_{ij}}{\sum N_i + \sum N_j}$$

where N_{ij} is the number of surrounding residues of type j around residue i. N_i and N_j are, respectively the total number of residues of type i and j. The top ten residue pairs were selected and used for further analysis. A similar analysis was carried out for residues influenced by medium range contacts.

3. Results and discussions

3.1. Occurrence of long-range contacts for different residue intervals in four structural classes

The percentage of long-range contacts computed for different intervals in four structural classes are given in Table 1. Proteins belonging to the same fold have been placed together with increasing length. In Fig. 1, we show the average percentage in different intervals for each of the structural classes and the whole set of proteins.

A perusal of Fig. 1 (and Table 1) clearly reveals the opposite trends between the folding of all- α and all- β proteins. The all- α class proteins have more long-range contacts in the 4-10 range and the all- β class proteins have more long-range contacts in the 11-20 range. This may be due to the specific hydrogen bonding pattern of α -helices and β -strands in these classes of proteins. The behavior of proteins in $\alpha + \beta$ and α/β classes are surprising. The range 4–10 is favored by $\alpha + \beta$ class of proteins while the α/β class of proteins prefer the 21-30 range. The helical and strand segments are segregated into separate domains in $\alpha + \beta$ proteins and the proteins in this class behave like either all- α or all- β type. In the present analysis we found that the features of $\alpha + \beta$ proteins are similar to that of all- α proteins. In the α/β class, the α -helices and β -strands occur alternatively and some residue distances are necessary to form β -strand and barrel, which leads to having higher contacts in the 21-30 range. A

similar trend was also observed in our previous study of $(\alpha/\beta)_8$ barrel proteins [19]. These results indicate that the long-range contacts from different intervals play a considerable role in the folding of proteins belonging to different structural classes.

The overall analysis shows that 45% of proteins prefer the 4–10 range with a higher number of long-range contacts followed by 11–20 and 21–30 ranges, respectively, which were preferred by 27% and 19% of proteins (Table 1). Only an insignificant number of proteins are found to have long-range contacts in the 31–40 and 41–50 range.

Interestingly, we note from Fig. 1 that the limit of residual distances to form long-range contacts is 21–30. This is consistent with the recent analysis on the number of interactions per residue as a function of sequential distance between the interacting residues, which showed a significant margin after the 25th neighbor [29].

3.2. Effect of size at different residue intervals of long-range contacts

We classified the proteins into three groups based on their size. Proteins with less than 100 residues were considered small, with residues between 100 and 200 were considered to be medium and with more than 200 residues were considered large. Our analysis shows that the larger proteins prefer the ranges 4–10 and 21–30; medium size proteins prefer the 4–10 range and small proteins prefer the three ranges 4–10, 11–20 and 21–30. This shows that the size of a protein may influence the long-range contact preferences to attain the stable tertiary structure.

3.3. Preference of amino acid residues in different intervals of long-range contacts

The average long-range contacts in different intervals computed for all the 20 amino acid residues in a set of 150 globular proteins are given in Table 2. The sum of average contacts per residue for all the intervals are given in the last column which shows the total long-range contacts per residue.

From this table, we observe that the residues

Table 1 Occurrence of long range contacts for different residue intervals in four structural classes of proteins

No.	PDB code	Fold	N	N_1	Percenta	ge of long ra	inge contacts	s in different	intervals	
					4-10	11-20	21-30	31-40	41-50	> 50
All-α proteins										
1	1C5A	Anaphylotoxins	65	148	17.57	9.46	37.84	17.57	10.81	6.76
2	1AVHA	Annexin	318	786	26.46	11.45	1.27	31.04	9.16	20.61
3	2CTS	Citrate synthase	437	1244	20.58	12.38	6.11	2.89	6.91	51.13
4	451C	Cytochrome C	82	222	38.74	15.32	9.01	8.11	10.81	18.02
5	3CYT	Cytochrome C	103	352	22.16	33.52	13.07	1.14	0.00	30.11
6	1BBL	Dihydrolipoamide transferase	37	48	62.50	25.00	12.50	0.00	0.00	0.00
7	2PDE	Dihydrolipoamide transferase	43	176	43.18	19.32	28.41	9.09	0.00	0.00
8	4CPV	EF-hand	108	270	35.56	20.00	9.63	7.41	3.70	23.70
9	1FHA	Ferritin	172	358	23.46	10.61	9.50	7.82	7.82	40.78
10	1FIAB	FIS protein	78	54	81.48	11.11	3.70	3.70	0.00	0.00
11	1HIGA	Four-helical cytokines	123	110	54.55	12.73	1.82	0.00	1.82	29.09
12	1IFA	Four-helical cytokines	159	282	14.89	3.55	4.96	2.84	2.84	70.92
13	256B	Four-helical bundle	100	204	19.61	17.65	21.57	16.67	10.78	13.73
14	2MHR	Four-helical bundle	118	194	19.59	15.46	16.49	7.22	10.31	30.93
15	2CCYA	Four-helical bundle	127	280	18.57	10.71	11.43	12.14	16.43	30.71
16	1LE4	Four-helical bundle	139	186	15.05	5.38	7.53	19.35	19.35	33.33
17	2LIG	Four-helical bundle	157	286	16.78	11.19	11.19	14.69	15.38	30.77
18	1ECO	Globin	136	218	22.94	2.75	4.59	11.93	6.42	51.38
19	2HCOA	Globin	141	298	20.81	7.38	6.04	18.12	7.38	40.27
20	2HCOB	Globin	146	312	19.87	5.77	7.69	16.67	12.82	37.18
21	1BABB	Globin	146	326	20.25	6.75	7.98	15.34	11.66	38.04
22	1HBG	Globin	147	370	16.76	7.03	7.57	11.89	6.49	50.27
23	2LHB	Globin	149	310	22.58	7.74	6.45	7.10	17.42	38.71
24	4MBN	Globin	153	270	27.41	5.19	4.44	10.37	8.89	43.70
25	1LH1	Globin	153	318	20.75	3.77	3.77	7.55	2.52	61.64
26	1MBS	Globin	153	338	30.18	4.14	5.33	15.98	10.06	34.32
27	1FCS	Globin	154	292	28.77	5.48	4.11	9.59	7.53	44.52
28	1CPCA	Globin	162	344	29.65	6.98	6.40	6.98	8.72	41.28
29	1GCN	Glucagon	29	2	100.00	0.00	0.00	0.00	0.00	0.00
30	2MLT	Mellitin	26	2	100.00	0.00	0.00	0.00	0.00	0.00
31	1PPT	Peptide harmones	36	48	33.33	29.17	37.50	0.00	0.00	0.00
32	1PP2	Phospholipase A2	122	374	28.34	18.72	5.35	2.67	3.74	41.18
33	1RPRA	ROP protein	63	110	16.36	16.36	18.18	16.36	9.09	23.64
34	1TROA	Trp repressor	104	88	52.27	13.64	15.91	6.82	11.36	0.00
35	1UTG	Uteroglobin	70	90	37.78	15.56	11.11	17.78	6.67	11.11
Complete set			4456	9310	24.88	11.19	8.38	10.93	8.21	36.41

Table 1 (Continued)

No.	PDB code	Fold	N	N_1	Percentage of long range contacts in different intervals						
					4-10	11-20	21-30	31-40	41-50	> 50	
All-β proteins											
36	1HIVA	Acid proteases	99	406	20.69	26.60	7.39	0.00	17.24	28.08	
37	2APR	Acid proteases	325	1760	17.61	19.20	6.82	5.45	2.05	48.86	
38	1HOE	α -amylase inhibitor	74	372	18.28	19.35	20.97	24.73	8.06	8.60	
39	1TEN	β -sandwich	89	428	14.02	26.17	14.02	15.89	15.89	14.02	
40	1TLK	β-sandwich	103	494	15.38	20.24	12.15	14.17	14.98	23.08	
41	1ACX	β -sandwich	107	524	17.56	22.90	17.18	11.83	8.02	22.52	
42	1REI	β -sandwich	107	566	15.90	26.86	4.59	3.89	10.60	38.16	
43	1CD8	β-sandwich	114	516	17.05	28.29	6.98	0.00	2.33	45.35	
44	2SOD	β-sandwich	151	888	18.02	20.72	6.76	6.98	6.31	41.22	
45	2GCR	β-sandwich	174	974	15.20	17.25	27.72	18.07	6.16	15.61	
46	1CID	β-sandwich	177	938	19.40	30.49	11.94	9.81	2.77	25.59	
47	3HHRC	β-sandwich	194	934	18.42	21.41	14.56	13.06	11.78	20.77	
48	1HILA	β-sandwich	217	1050	17.33	24.76	8.00	6.29	12.19	31.43	
49	1MAMH	β-sandwich	217	1020	15.29	25.29	15.69	5.49	8.43	29.80	
50	4FAB	β-sandwich	219	1012	16.80	26.48	11.86	5.53	7.51	31.82	
51	2ILA	β-trefoil	145	768	25.26	25.26	4.95	9.64	12.50	22.40	
52	8I1B	β-trefoil	146	674	26.11	28.49	5.93	10.68	9.50	19.29	
53	1TIE	β-trefoil	166	844	21.56	29.15	8.29	9.72	7.35	23.93	
54	2LALA	ConA-like lectins	181	692	23.12	29.77	14.45	11.56	3.47	17.63	
55	2AYH	ConA-like lectins	214	1208	17.05	18.71	11.42	2.98	3.97	45.86	
56	2PCY	Cupredoxins	99	482	13.28	16.18	26.14	13.28	15.35	15.77	
57	2AZA	Cupredoxins	129	618	14.56	13.92	17.80	7.44	7.77	38.51	
58	3CNA	ConA-like serine proteases	237	1336	15.27	21.11	7.63	3.59	2.54	49.85	
59	2PAB	Prealbumin	114	524	18.70	22.52	18.70	13.74	11.83	14.50	
60	1RDG	Rubredoxin-like	52	182	45.05	19.78	7.69	7.69	19.78	0.00	
61	1SHFA	SH3-like barrel	59	258	25.58	40.31	12.40	6.20	6.98	8.53	
62	1CDTA	Snake toxin-like	60	290	25.52	24.14	24.83	15.86	0.69	8.97	
63	3EBX	Snake toxin-like	62	292	18.49	27.40	23.29	21.23	0.68	8.90	
64	1CTX	Snake toxin-like	71	324	17.28	22.84	20.7	22.22	6.17	11.11	
65	2AVIA	Streptavidin-like	121	580	21.03	41.38	24.48	1.38	0.00	11.72	
66	1PPFE	Thrombin	218	1166	15.44	19.38	11.15	7.72	10.81	35.51	
67	1TPA	Trypsin-like	58	254	14.17	25.98	38.58	11.81	0.79	8.66	
68	1TGS	Trypsin-like serine proteases	56	188	19.15	15.96	38.30	11.70	14.89	0.00	
69	2SNV	Trypsin-like serine proteases	151	740	27.84	23.78	15.68	11.62	8.65	12.43	
70	2ALP	Trypsin-like serine proteases	198	1244	17.68	20.58	12.86	11.41	7.88	29.58	

No.	PDB code	Fold	N	N_1	Percent	age of long	range conta	cts in differe	ent intervals	
					4-10	11-20	21-30	31-40	41-50	> 50
71	4CHA	Trypsin-like serine	239	1336	12.43	20.51	11.83	7.34	8.53	39.37
		proteases								
72	3EST	Trypsin-like serine	240	1304	14.11	18.87	10.43	9.66	6.75	40.18
		proteases								
73	2BPA2	Viral coat and capsid proteins	175	912	5.26	7.46	20.61	4.17	8.77	53.73
Complete set			5558	28 098	17.59	22.59	13.23	8.77	7.56	30.27
$\alpha + \beta$ proteins										
74	1LTSD	ADP ribosylation	103	356	24.16	32.02	1.12	0.56	10.11	32.02
75	1PAX	ADP ribosylation	350	1338	9.87	12.56	4.63	10.76	9.87	52.32
76	2PIA	eta-grasp	321	1394	15.64	14.78	21.23	7.60	5.88	34.86
77	4BLMA	β -lactamase	256	1060	16.04	22.26	17.36	3.40	0.38	40.57
78	1EAF	CoA-dependent acetyl transferases	243	866	17.09	17.09	13.63	8.78	3.00	40.42
79	1TFG	Cysteine knot cytokines	112	506	17.79	24.51	19.37	13.44	0.00	24.90
80	2PAD	Cysteine proteinases	108	270	35.56	20.00	9.63	7.41	3.70	23.70
81	1PPN	Cysteine proteinases	212	1076	14.68	11.34	13.94	18.59	9.11	32.34
82	2ACT	Cysteine proteinases	218	1102	15.79	12.89	12.52	11.07	14.34	33.39
83	2B5C	Cytochrome b5	85	234	24.79	7.69	17.95	13.68	15.38	20.51
84	4DNK	DNase-I type	250	1134	17.11	13.58	17.28	23.10	11.82	17.11
85	4ENL	Enolase-like	436	2046	18.96	11.53	15.35	6.16	7.23	40.76
86	1FDX	Ferredoxin-like	54	188	25.53	13.83	19.15	15.96	19.15	6.38
87	1NRCA	Ferredoxin-like	85	306	18.95	18.95	8.50	11.11	11.11	31.37
88	3RUBS	Ferredoxin-like	123	360	21.11	18.33	15.00	6.67	6.67	32.22
89	8CAT	Heme-linked catalases	498	1754	16.53	11.74	11.06	10.26	9.92	40.48
90	1HIP	HIPIP	85	326	28.83	19.63	3.07	17.18	8.59	22.70
91	3IL8	IL8-like	68	192	29.17	30.21	15.62	13.54	11.46	0.00
92	3INS	Insulin-like	102	388	17.01	28.35	24.23	0.00	18.56	11.86
93	3LYZ	Lysozyme-like	129	472	31.36	26.69	7.63	9.32	3.39	21.61
94	2LZM	Lysozyme-like	164	410	36.59	22.44	10.73	14.15	4.88	11.22
95	9RNT	Microboil ribonucleases	104	392	28.57	31.12	9.69	10.20	4.59	15.82
96	1HSBA	MHC antigen recognition domain	270	1076	24.54	25.65	12.64	5.95	8.55	22.68
97	2CDV	Multiheme cytochromes	107	284	68.31	23.94	0.00	0.70	3.52	3.52
98	1OVB	Periplasmic binding protein	159	740	24.05	18.65	8.38	0.81	10.00	38.11
99	2PRF	Profilin-like	125	484	32.64	29.75	14.05	2.89	0.00	20.66
100	2RNS	Ribonuclease A-like	124	510	21.18	21.18	9.41	24.31	4.31	19.61
101	1CTF	Ribosomal protein	68	234	14.53	8.55	6.84	21.37	23.93	24.79
102	2ACHA	Serpins	337	1380	17.39	13.19	13.77	5.65	6.23	43.77
103	1SHAA	SH2-like	103	388	34.02	25.26	20.10	3.61	1.03	15.98

Table 1 (Continued)

Table 1 (Continued)

No.	PDB code	Fold	N	N_1	Percenta	ige of long ra	nge contacts	in different i	ntervals	
					4-10	11-20	21-30	31-40	41-50	> 50
104	3SICI	Subtilisin inhibitor	107	460	25.22	21.74	13.48	3.04	2.61	33.91
105	2SSI	Subtilisin inhibitor-like	107	442	25.34	22.17	14.48	3.62	2.71	31.67
106	4TMS	Thymidylate synthase	316	1082	17.93	17.01	6.47	14.79	4.62	39.19
107	2MS2A	Viral coat protein	129	424	34.43	38.68	14.62	10.85	1.42	0.00
108	4TLN	Zincin-like	316	1456	25.69	21.02	10.16	6.32	1.79	35.03
Complete set			6374	25 130	20.93	18.05	12.71	9.42	7.00	31.90
α / β proteins										
109	2CAB	Carbonic anhydrases	256	1364	15.69	14.08	12.76	8.21	1.47	47.80
110	1CRN	Crambin-like	46	134	26.87	13.43	17.91	32.84	8.96	0.00
111	3DFR	Dihydrofolate reductase	162	630	13.33	22.22	13.97	6.98	5.40	38.10
112	1FX1	Flavodoxin	147	630	14.29	5.71	13.33	39.68	14.60	12.38
113	1OFV	Flavodoxin-like	169	722	14.40	8.31	15.79	33.24	13.57	14.68
114	1GPB	Glycogen phosphorylase	823	3016	15.98	10.08	11.41	10.54	6.70	45.29
115	1Q21	Isopropylmalate dehydrogenase	171	666	17.42	12.61	14.71	17.72	11.71	25.83
116	1SBP	Periplasmic binding protein	309	1212	20.63	8.75	2.64	8.58	7.43	51.98
117	1PFKA	Phosphofructokinase	320	1374	13.25	11.64	11.64	10.19	6.40	46.87
118	1ULA	Phosphorylase-like	289	1100	13.27	6.00	11.09	3.27	6.73	59.64
119	3CPA	Phosphorylase-like	307	1386	16.45	10.53	7.65	5.92	11.11	48.34
120	1RHD	Rhodanase	293	1170	16.75	7.69	20.34	5.64	1.71	47.86
121	1GLAG	Ribonuclease H-like motif	489	2344	17.41	12.97	8.36	12.03	6.57	42.66
122	1CSEI	Rossmann fold	63	216	16.67	48.15	4.63	0.93	14.81	14.81
123	3FXN	Rossmann fold	138	508	14.17	5.51	24.80	23.62	11.81	20.08
124	1ETU	Rossmann fold	177	680	18.24	12.06	14.71	17.06	13.24	24.71
125	3ADK	Rossmann fold	194	540	21.48	4.07	1.11	3.33	1.11	68.89
126	1DHR	Rossmann fold	236	988	15.38	19.84	12.75	3.04	29.15	19.84
127	2DRI	Rossmann fold	271	1302	11.83	11.37	30.72	16.13	3.07	26.88
128	2SBT	Rossmann fold	275	1568	13.78	11.73	18.24	10.84	6.38	39.03
129	5ABP	Rossmann fold	306	1320	15.61	9.39	26.82	15.76	4.70	27.73
130	2HAD	Rossmann fold	310	1220	17.05	6.72	26.07	5.74	3.77	40.66
131	3LDH	Rossmann fold	329	1248	18.43	12.82	22.76	11.54	4.81	29.65
132	2GPD	Rossmann fold	333	1514	15.85	15.98	22.32	3.04	4.49	38.31
133	2LIV	Rossmann fold	344	1462	18.19	9.99	27.91	6.43	5.47	32.01
134	5ADH	Rossmann fold	374	1910	14.03	13.61	26.91	3.98	3.98	37.49
135	4ICD	Rossmann fold	414	1790	16.42	14.30	6.48	15.53	2.91	44.36
136	3PGK	Rossmann fold	415	1816	15.53	8.15	20.81	14.10	8.04	33.37
137	2PGD	Rossmann fold	473	1640	18.29	11.10	23.90	6.22	0.98	39.51
138	3COX	Rossmann fold	500	2574	17.79	11.42	12.04	4.82	2.02	51.90
139	1ABA	Thioredoxin fold	87	276	33.33	12.32	24.64	2.17	4.35	23.19
140	1SRX	Thioredoxin fold Thioredoxin fold	108	392	26.53	10.20	8.67	14.29	12.76	27.55

Table 1 (Continued)

No.	PDB code	Fold	N	N_1	Percenta	ge of long ran	ge contacts in	different inte	ervals	
					4-10	11-20	21-30	31-40	41-50	> 50
141	1WSYA	TIM barrel	248	900	13.56	12.67	36.44	6.22	12.00	19.11
142	1TRE	TIM barrel	255	1010	14.46	12.28	19.80	24.75	13.27	15.45
143	1GOX	TIM barrel	350	1404	12.25	10.40	19.80	10.54	3.99	43.02
144	1MNS	TIM barrel	357	1600	14.38	11.00	35.00	9.12	1.38	29.12
145	2AAA	TIM barrel	476	2132	16.04	13.41	15.20	13.51	12.85	28.99
146	2TAA	TIM barrel	478	2114	15.52	13.91	13.72	13.62	13.15	30.09
147	1TIM	TIM barrel	494	2020	11.88	12.18	19.21	22.28	13.56	20.89
148	1FCB	TIM barrel	494	1884	12.85	8.07	17.73	15.61	4.14	41.61
149	1CDG	TIM barrel	686	3482	16.43	13.38	16.94	11.43	9.19	32.62
150	1CIS	Trypsin inhibitor	66	268	14.18	34.33	20.90	2.24	11.94	16.42
Complete set			13 032	55 526	15.82	11.77	17.46	11.32	7.25	36.37

N and N_1 are, respectively, the total number of residues and the total number of long-range contacts. The details about the fold are available in [22,23].

Cys, Ile and Val prefer the 11–20 range and all the other residues prefer the 4–10 range. Interestingly, Cys, Ile and Val are the three topmost hydrophobic residues [30]. These residues have the higher tendency of forming hydrophobic clusters and disulfide bridges due to long-range contacts and hence prefer the range of 11–20.

3.4. Preference of amino acid residues in different secondary structures to form long-range contacts at various intervals

The number of long-range contacts in different intervals computed for the 20 amino acid residues in helical and strand segments of globular proteins are presented in Table 3. From this table, we observe that in all- α class, most of the residues in helical segments prefer the 4–10 range. Interestingly, the smallest residue, Gly in helical segments prefers the interval 31–40 with higher difference; the residues Cys and Arg prefer the ranges, 21–30 and 31–40, respectively.

The analysis on the residues in β -strands of all- β proteins shows that all the residues except Lys and Asn prefer the 11–20 range; these two residues prefer the 4–10 range.

In the $\alpha + \beta$ class, all residues in helical segments prefer the 4–10 range; in strand segments,

the residues Asp and Gln prefer the 4–10 range while all other residues prefer the 11–20 range. Interestingly, the aromatic residues Phe and Trp equally prefer these two ranges (4–10 and 11–20). Furthermore, comparison between helical and strand segments shows that in 4–10 range, the residues Ala and Met have higher long-range contacts in helical segments than those in strand segments; similar trend is observed for Glu and Ala in the intervals, 31–40 and 41–50, respectively. Also, we observed that some residues in specific ranges have a similar number of long-range contacts both in helical and strand segments; Lys and Leu in the 4–10 range, and Asn and Gln in the 41–50 range.

In α/β class, all the residues except Gly, His and Pro in helical segments prefer the 4–10 range; Gly and His prefer the 21–30 range and Pro prefers the 41–50 range. In strand segments, the residue Lys prefers the ranges 4–10 and 11–20; Arg, Ser, Thr and Trp prefer the 11–20 range and all other residues prefer the 21–30 range. In the 4–10 range, the hydrophobic residues, Cys, Ile and Val have higher long-range contacts in β -strand segments than those in α -helical segments. Similar tendency is also observed for helix breaking residue, Pro; all other residues have higher long-range contacts in helical segments. In all

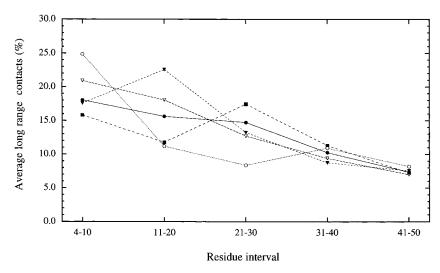


Fig. 1. Average percentage of long range contacts in different intervals for the four structural classes of globular proteins \bigcirc : all- α ; \blacktriangledown : all- β ; \triangledown : $\alpha + \beta$; \blacksquare : α/β ; \bullet : combined set.

Table 2 Average long-range contacts per residue for the 20 amino acid residues in different intervals

Residue	Interv	al					
	4-10	11-20	21-30	31-40	41-50	> 50	Total
Ala	0.73	0.56	0.62	0.39	0.31	1.44	4.05
Asp	0.52	0.38	0.44	0.29	0.23	0.94	2.80
Cys	1.03	1.16	0.99	0.78	0.51	1.58	6.05
Glu	0.52	0.40	0.37	0.29	0.22	0.83	2.63
Phe	0.89	0.74	0.63	0.45	0.30	1.54	4.54
Gly	0.64	0.59	0.61	0.47	0.34	1.51	4.17
His	0.63	0.56	0.52	0.37	0.32	1.11	3.52
Ile	0.81	0.92	0.79	0.55	0.41	1.78	5.26
Lys	0.64	0.44	0.38	0.28	0.19	0.84	2.77
Leu	0.86	0.71	0.61	0.43	0.31	1.59	4.52
Met	0.81	0.71	0.61	0.41	0.30	1.57	4.41
Asn	0.63	0.43	0.50	0.39	0.24	1.20	3.38
Pro	0.66	0.55	0.55	0.35	0.29	1.31	3.71
Gln	0.68	0.49	0.43	0.32	0.20	0.93	3.05
Arg	0.67	0.58	0.46	0.39	0.22	1.14	3.46
Ser	0.67	0.58	0.48	0.37	0.26	1.32	3.68
Thr	0.77	0.77	0.49	0.35	0.29	1.46	4.13
Val	0.91	0.92	0.82	0.51	0.44	1.84	5.45
Trp	1.01	0.89	0.44	0.44	0.31	1.51	4.60
Tyr	0.94	0.81	0.60	0.52	0.37	1.44	4.68

other ranges, most of the residues in β -strand segments have higher long-range contacts. We also observed that few charged residues have higher long-range contacts in helical segments for specific ranges; His in 31–40 and Glu in 41–50. The positively charged residues His, Lys and Arg have a similar tendency in helical and strand segments to form long-range contacts in the 41–50 range.

3.5. Influence of long-range contacts in different structural classes of globular proteins

The number of long-range contacts vs. residue numbers for four typical proteins are displayed in Fig. 2. The proteins are selected in such a way that all are of the same size and from four different structural classes.

3.5.1. (I) all- α class (4MBN)

For the protein myoglobin (all- α class), we

observed the highest number for the G65 residue with seven long-range contacts and six long-range contacts for G25 and Y146 (Fig. 2a). Both residues belong to helical segments. We also found that most of the residues have 0-4 long-range contacts.

3.5.2. (II) all- β class (2SOD)

The maximum of 13 long-range contacts are observed for superoxide dismutase, an all- β class of proteins (Fig. 2b). The higher long-range contacts are found for a cluster of residues near the highest peaks at G42, V116 and I147. They are present in the β -strand segments S4, S7 and S8 respectively. Furthermore, the analysis on the residues with more than 10 long-range contacts shows that Ile, Leu, Val and His are the members in this category. Surprisingly, we note the residue His has higher long-range contacts, as this is surrounded by hydrophobic residues.

3.5.3. (III) $\alpha + \beta$ class (2LZM)

We found two separate domains for α -helices and β -strands in the $\alpha + \beta$ type of protein, lysozyme T4 (Fig. 2c). The N-terminal domain contains β -strands with highest number of longrange contacts. We observed a highest peak at Y25 with 12 long-range contacts, similar to all- β class of proteins. The C-terminal domain contains α -helices and the maximum number of contact is observed for T152, which has seven long-range contacts, similar to the all- α class of proteins.

3.5.4. (IV) α / β class (3DFR)

In Fig. 2d, we display the number of long-range contacts for the α/β class protein, dihydrofolate reductase. From this figure, we observed the maximum of 10 long-range contacts for the residues F3, I13, V41, L62, I96 and E156. Interestingly, all the residues are in β -strands and most of them are hydrophobic. The alternate position of α -helical and β -strand segments are clearly seen in this figure with more and less numbers of long-range contacts. This pattern of high and low peaks differentiate the α/β type of proteins from the $\alpha+\beta$ class of proteins.

Table 3

Number of long-range contacts at different intervals for the 20 amino acid residues in helical and strand segments of globular proteins

Residue	Number	umber of long range contacts in helical segments								
	4-10	11-20	21-30	31-40	41-50	> 50	Total			
(i) All-α pro	oteins									
Ala	164	76	78	125	96	406	945			
Asp	42	24	23	17	18	72	196			
Cys	28	18	33	15	9	38	141			
Glu	63	46	24	60	25	107	325			
Phe	98	45	26	30	13	111	323			
Gly	41	21	33	116	73	82	366			
His	46	13	14	22	19	27	141			
Ile	58	48	38	44	36	185	409			
Lys	108	58	42	66	30	123	427			
Leu	185	127	99	119	114	361	1005			
Met	75	30	34	13	16	68	236			
Asn	37	26	24	11	11	53	162			
Pro	24	12	8	17	6	42	109			
Gln	51	28	23	40	9	69	220			
Arg	44	11	24	53	20	77	229			
Ser	37	34	34	13	24	109	251			
Thr	53	28	23	23	20	100	246			
Val	91	50	60	67	66	293	627			
Trp	15	5	2	5	2	57	86			
Tyr	53	21	23	27	22	115	261			

Table 3 (Continued)

Residue	Number	of long range	contacts in st	rand segment	S		
	4-10	11-20	21-30	31-40	41-50	> 50	Total
(ii) All-β proteins							
Ala	185	209	98	63	90	283	928
Asp	73	76	49	27	26	79	330
Cys	104	205	90	96	47	175	717
Glu	113	124	93	44	53	130	557
Phe	143	255	91	90	50	224	853
Gly	141	286	127	85	57	254	950
His	42	84	33	22	15	64	260
Ile	163	301	128	67	69	235	963
Lys	175	164	109	69	46	140	703
Leu	290	444	189	155	66	492	1636
Met	53	79	37	31	15	119	334
Asn	86	75	54	41	23	135	414
Pro	44	50	34	11	21	76	236
Gln	134	138	71	39	46	134	562
Arg	113	120	74	87	40	150	584
Ser	171	285	95	108	87	333	1079
Thr	216	374	98	87	74	322	1171
Val	304	525	250	166	164	525	1934
Trp	67	104	22	31	24	94	342
Tyr	191	242	110	115	58	143	859

Table 3 (Continued)

Residue	Numbe	r of long ra	ange contac	ts in helica	l and stranc	segments								
	4-10		11-20		21-30		31-40		41-50		> 50		Total	
	Н	S	H	S	Н	S	Н	S	H	S	Н	S	Н	S
(iii) $\alpha + \beta$	proteins													
Ala	168	108	89	185	72	138	73	80	58	27	247	249	707	787
Asp	35	83	14	71	22	33	17	37	16	31	56	97	160	352
Cys	22	57	18	70	19	28	8	45	9	22	46	91	122	313
Glu	38	72	27	103	44	50	34	24	27	30	62	115	232	394
Phe	45	113	19	113	29	92	24	64	9	47	68	218	194	647
Gly	48	89	22	93	20	49	14	49	8	27	86	172	198	479
His	20	34	12	46	9	48	14	30	13	18	13	78	81	254
Ile	74	129	54	276	48	111	30	85	20	82	147	219	373	902
Lys	76	77	31	147	25	84	9	44	10	31	51	151	202	534
Leu	159	162	87	241	55	146	51	94	28	61	241	365	621	1069
Met	38	17	11	62	9	39	9	13	1	10	33	56	101	197
Asn	31	52	10	75	25	27	17	30	11	12	87	116	181	312
Pro	15	56	7	69	7	39	10	29	2	13	37	104	78	310
Gln	45	69	25	60	20	40	35	43	17	16	60	59	202	287
Arg	52	83	15	115	24	38	10	36	8	35	53	82	162	389
Ser	55	91	44	138	37	111	29	56	22	34	99	176	286	606
Thr	37	159	27	192	19	87	6	70	4	42	74	163	167	713
Val	92	243	60	369	43	172	33	130	41	91	138	517	407	522
Trp	25	49	9	48	3	24	12	26	13	13	32	27	94	187
Tyr	48	120	18	175	10	88	8	44	14	37	61	195	159	659

Table 3 (Continued)

Residue	Numbe	r of long ra	ange contac	ts in helica	l and stranc	d segments								
	4-10		11-20		21-30		31-40		41-50		> 50		Total	
	Н	S	Н	S	Н	S	Н	S	Н	S	Н	S	Н	S
(iv) α/β p	roteins													
Ala	334	118	207	170	196	283	143	120	104	122	645	451	1629	1264
Asp	68	47	42	84	61	86	35	53	38	41	153	182	397	493
Cys	24	32	19	35	14	58	14	63	11	23	84	65	166	276
Glu	124	80	44	76	49	94	45	69	35	31	187	110	484	460
Phe	142	71	65	84	63	180	41	69	27	41	186	335	524	780
Gly	129	83	70	155	135	221	116	157	53	98	363	317	866	1031
His	24	49	8	43	35	53	31	14	15	16	61	86	174	261
Ile	137	161	106	234	101	431	103	238	60	169	379	727	886	1960
Lys	147	88	58	88	51	78	51	82	35	36	159	189	501	561
Leu	275	146	109	233	129	374	112	204	84	173	437	651	1146	1781
Met	73	38	53	74	42	74	31	54	29	25	154	148	382	413
Asn	63	52	33	51	44	87	26	54	30	30	150	139	346	413
Pro	16	59	23	61	25	79	18	65	35	32	97	119	214	415
Gln	87	50	29	67	51	71	41	48	22	19	143	92	373	347
Arg	108	49	33	94	52	91	71	82	26	27	161	208	451	551
Ser	99	72	35	115	64	106	66	78	31	47	249	215	544	633
Thr	127	118	81	166	49	140	77	86	49	59	301	334	684	903
Val	182	335	96	368	115	560	104	244	80	169	381	890	958	2566
Trp	53	41	19	49	16	23	19	22	9	21	98	96	214	252
Tyr	84	74	47	98	49	111	47	97	19	78	194	206	440	664

H and S are, respectively, helical and strand segments.

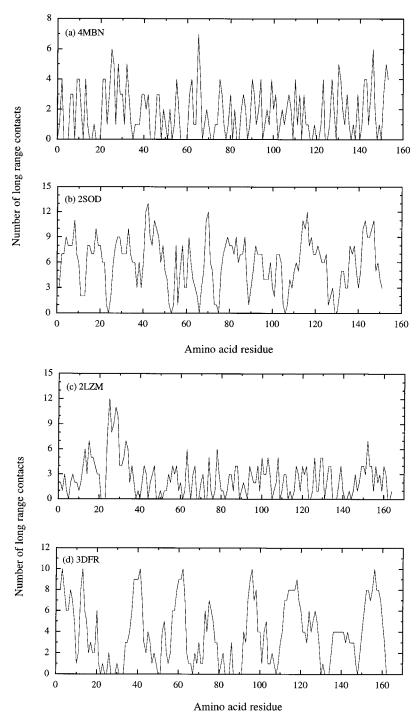


Fig. 2. Number of long-range contacts profile for four typical globular proteins in different structural classes (a) all- α (4MBN, Myoglobin) (b) all- β (2SOD, Superoxide dismutase) (c) $\alpha + \beta$ (2LZM, Lysozyme T4) (d) α/β (3DFR, Dihydrofolate reductase).

3.6. Preference of amino acid residues to form long-range contacts

We analyzed the features of all the amino acid residues to have long-range contacts. Surprisingly, 84.8% of residues have at least one long-range contact. Of the considered 29 420 residues, 24 955 residues form long-range contacts. We note a variation of this tendency in different structural classes. The percentage of residues having long-range contacts in different structural classes, all- α , all- β , $\alpha + \beta$ and α/β are, respectively 71.5, 90.2, 84.6 and 87.1%. These results suggest that while long-range contacts are crucial in the folding of proteins belonging to all the four structural classes, their effect is more pronounced in the all- β class of proteins followed by α/β class of proteins.

The preference of the 20 amino acid residues to have at least one long-range contact is given in Table 4. From this table, we observe that more than 90% of hydrophobic and aromatic residues have at least one long-range contact in all structural classes. In the all- α class, the residues Ile and Cys are mostly influenced by long-range contacts. Interestingly, most of the positively charged residues, His, Lys and Arg in all- β class proteins have at least one long-range contact.

The analysis on residues having more than 10 long-range contacts showed that the residues Cys, Gly, Ile, Ser and Val have higher preferences. Interestingly, the residues Val, Ser and Ile are the most preferred residues in the β -strand segment [31] and the residues Cys, Ile and Val fall under the category beta former and strong beta former [32].

3.7. Number of long-range contacts vs. number of residues

We computed the percentage of residues for different numbers of long-range contacts in all the structural classes and combined set of proteins and the results are presented in Table 5.

From this table, we note that the residues in all- β class of proteins will have an average of 3–8 long-range contacts. All other classes will have an

Table 4
Preference of residues with atleast one long-range contact in four structural classes

Residue	All- α	All- β	$\alpha + \beta$	α/β	Combined set
Ala	69.39	88.01	83.33	86.78	82.73
Asp	57.30	86.51	70.05	76.30	73.53
Cys	86.54	98.74	98.60	97.26	97.00
Glu	57.01	86.00	72.03	74.63	72.30
Phe	80.65	94.71	96.80	93.88	92.48
Gly	68.30	82.44	80.55	86.13	81.77
His	68.87	94.51	85.99	84.55	82.59
Ile	90.58	95.42	94.60	95.39	94.60
Lys	69.23	89.00	75.85	75.62	76.44
Leu	84.63	96.46	94.41	93.94	92.51
Met	84.82	97.47	88.68	92.71	90.99
Asn	64.67	84.48	80.26	83.79	80.46
Pro	64.00	89.93	84.42	86.65	83.96
Gln	61.14	86.84	80.17	81.77	78.77
Arg	70.81	88.29	83.22	84.33	82.55
Ser	60.64	85.60	82.18	84.75	81.20
Thr	65.64	92.42	83.76	88.84	85.60
Val	85.05	96.38	93.68	95.17	93.73
Trp	79.66	91.92	94.51	95.98	92.43
Tyr	85.42	97.20	93.45	93.90	93.29

average of 1-4 long-range contacts and more than 50% of residues have this level of contacts.

A plot connecting number of long-range contacts and percentage of residues for four structural classes and combined set of proteins is displayed in Fig. 3. From this figure we observed high peaks at three and four long-range contacts for all the structural classes. It is evident that more than 22% of residues have three or four long-range contacts irrespective of structural classes. This shows the importance of long-range interactions to the folding and stability of all classes of globular proteins.

3.8. Residue pairs influenced by long- and mediumrange contacts

The preference of each amino acid residue to be surrounded by all the 20 amino acid residues due to long-range contacts are computed and the topmost 10 residue pairs are given in Table 6a. From this table, approximately 50% of residue pairs are observed with the same residue (C-C;

Table 5
Percentage of residues with different long-range contacts in four structural classes

$N_{\rm long}$	Percent	age of res	idues		
	All-α	All-β	$\alpha + \beta$	α/β	Combined set
0	28.47	9.75	15.36	12.88	15.49
1	19.03	6.81	10.88	11.18	11.64
2	14.99	6.53	10.97	10.34	10.54
3	14.56	10.23	11.08	11.20	11.54
4	10.85	12.14	13.19	11.20	11.74
5	5.84	10.07	9.34	9.82	9.01
6	3.34	9.16	7.48	8.10	7.30
7	1.52	10.60	6.76	6.95	6.63
8	0.82	10.23	5.91	6.74	6.26
9	0.35	6.99	4.25	5.22	4.55
10	0.08	3.83	2.42	3.31	2.71
11	0.11	1.80	1.35	1.81	1.44
12	0.00	0.94	0.74	0.90	0.07

N_{long}, number of long range contacts.

V-V; G-G; L-L, A-A and I-I). The highest preference is observed for C-C, which may be due to the formation of disulfide bridges. The hydrophobic residues Ala, Val and Leu contribute more for long-range contacts, which may be due to the formation of hydrophobic clusters. Note that the contribution of Ile is less compared to other hydrophobic residues. In all- α proteins, the charged residues Glu and Lys have higher influence to form long-range contacts.

In medium-range contacts (Table 6b), we found that the effect of C-C is much less; hydrophobic and polar residues have an equal role in forming medium-range contacts. The polar residue, Ser and the charged residues, Asp, Glu and Lys have more medium-range contacts with other residues. Interestingly, D-K and E-K are one of the topmost three preferred residue pairs for the classes, $\alpha + \beta$ and α/β , respectively. This may be due the formation of ion-pairs [33]. The residue pair S-S is the second most preferred one in the all- β class of proteins.

The comparison of medium- and long-range contacts shows that the charged and polar residues play a main role in forming medium range contacts although hydrophobic residues are also making contribution. In long-range contacts, most of the contribution is influenced by hydrophobic residues and the role of polar residues are minimal.

The information about the preference of each amino acid residue surrounded by all the 20 amino acid residues due to medium and long-range contacts may be helpful to understand the stability of proteins due to mutations.

3.9. Comparison between short- and long-range interactions

The importance of long-range interactions has been determined by comparing it with short-range

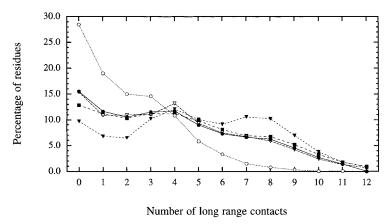


Fig. 3. Number of long range contacts vs. percentage of residues in four structural classes of proteins \bigcirc : all- α ; ∇ : all- β ; ∇ : $\alpha + \beta$; \square : α/β ; \square : combined set.

Table 6
Topmost 10 residue pairs influenced by medium and long-range contacts in four structure classes

No.	All- α	All- $oldsymbol{eta}$	$\alpha + \beta$	α/eta	Combined set
A. Long ran	ge contacts				
1	A-L	C-C	C-C	V-V	C-C
2	L-L	V-V	V-V	G-G	V-V
3	C-C	L-V	L-L	A-V	G-G
4	A-A	G-G	A-V	I-V	L-V
5	L-V	L-L	A-L	L-V	A-V
6	A-V	S-S	L-V	I-L	L-L
7	V-V	A-V	I-L	A-L	A-L
8	E-K	T-V	I-I	A-A	A-A
9	I-L	G-T	I-V	I-I	I-V
10	A-I	A-A	A-I	L-L	I-L
B. Medium i	range contacts				
1	A-A	A-A	L-V	A-A	A-A
2	L-L	S-S	A-A	E-K	L-L
3	A-K	C-C	D-K	L-L	E-K
4	E-K	D-G	G-G	A-G	A-K
5	D-K	G-G	A-L	G-G	D-K
6	L-V	I-V	E-K	A-L	A-L
7	F-F	L-V	C-C	A-D	L-V
8	I-L	D-R	A-D	I-L	G-G
9	A-E	G-S	A-S	A-K	A-G
10	G-L	G-V	W-W	L-V	I-L

Table 7 Number of short and long range interactions in different structural classes and in different sizes of globular proteins

$N_{ m s}$	N_1	$N_{\rm l}/N_{\rm s}$
17562	9310	0.530
21 974	28 098	1.279
25 256	25 130	0.995
51 834	55 526	1.071
8216	6954	0.846
35 154	31 260	0.889
73 256	79 850	1.090
	17 562 21 974 25 256 51 834 8216 35 154	17 562 9310 21 974 28 098 25 256 25 130 51 834 55 526 8216 6954 35 154 31 260

 $N_{\rm s}$ and $N_{\rm l}$ are, respectively, number of short and long range contacts.

interactions in different aspects, namely (1) in four different structural classes and; (2) in different size of proteins. The results are shown in Table 7. The ratio between the number of interactions in long- and short-range is a good measure to estimate the importance of these interactions. We found that the long-range interactions are more important than short-range in all- β class of proteins and they are equally important in $\alpha + \beta$ and α/β classes. The short-range interactions play a dominant role in all- α proteins. Among different size of proteins, we found that the influence of long-range interactions are higher than that of short range in proteins of large size.

These results suggest that the long-range interactions play an important role in the folding and stability of protein molecules.

4. Conclusions

Protein structures are stabilized by both local (short, medium) and long-range interactions. The analysis on different structural classes of proteins

shows that the residues in all- β class of proteins have more long-range contacts than that in all- α proteins. Most of the long-range contacts are found to be in the distance of 4-10 residue far apart from the central residue as well as 11-20 and 21–30 ranges. The hydrophobic and aromatic residues have at least one long-range contact in all structural classes and the positively charged residues His, Lys and Arg have significant longrange contacts in all- β class of proteins. The C-C residue pair and hydrophobic pairs are dominated in long-range contacts and the charged residue pairs D-K and E-K are, respectively, one of the most influenced pairs for medium range contacts in $\alpha + \beta$ and α/β class of proteins. The knowledge about favored residue distances and preferred residue pairs for long- and mediumrange interactions in different structural classes obtained in the present study may help to improve the secondary/tertiary structure predictions and in the de novo design of proteins.

References

- M.W. MacArthur, J.M. Thornton, Influence of proline residues on protein conformation. J. Mol. Biol. 218 (1991) 397–412.
- [2] M.Ya. Karpeisky, V.A. Ilyin, Analysis of non-polar regions in proteins. J. Mol. Biol. 224 (1992) 629–638.
- [3] N. Vtyurin, The role of local tight packing of hydrophobic groups in β-structure. Proteins 15 (1993) 62–70.
- [4] P.K. Ponnuswamy, M.M. Gromiha, On the conformational stability of folded proteins. J. Theor. Biol. 166 (1994) 63–74.
- [5] U. Gobel, C. Sander, R. Schneider, A. Valencia, Correlated mutations and residue contacts in proteins. Proteins 18 (1994) 309–317.
- [6] I. Bahar, M. Kaplan, R.L. Jernigan, Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches. Proteins 29 (1997) 292–308.
- [7] C. Zhang, J.L. Cornette, C. Delisi, Consistency in structural energetics of protein folding and peptide recognition. Protein Sci. 6 (1997) 1057–1064.
- [8] R.B. Russell, M.A. Saqi, P.A. Bates, R.A. Sayle, M.J. Sternberg, Recognition of analogous and homologous protein folds assessment of prediction success and associated alignment accuracy using empirical substitution matrices. Protein Eng. 11 (1998) 1–9.
- [9] D.S. Gottfried, E. Haas, Nonlocal interactions stabilize

- compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor. Biochemistry 31 (1992) 12353–12362.
- [10] A. Nayeem, H.A. Scheraga, A statistical analysis of side-chain conformations in proteins: comparison with ECEPP predictions. J. Protein Chem. 13 (1994) 283–296.
- [11] B. Reva, A.V. Finkelstein, M. Sanner, A.J. Olson, Residue-residue mean-force potentials for protein structure recognition. Protein Eng. 10 (1997) 865–876.
- [12] J. Skolnick, A. Kolinski, A.R. Ortiz, MONSSTER: a method for folding globular proteins with a small number of distance restraints. J. Mol. Biol. 265 (1997) 217–241.
- [13] V.I. Abkevich, A.M. Gutin, E.I. Shakhnovich, Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. J. Mol. Biol. 252 (1995) 460–471
- [14] M.G. Reese, O. Lund, J. Bohr, H. Bohr, J.E. Hansen, S. Brunak, Distance distributions in proteins: a six-parameter representation. Protein Eng. 9 (1996) 733–740.
- [15] J. Selbig, P. Argos, Relationships between protein sequence and structure patterns based on residue contacts. Proteins 31 (1998) 172–185.
- [16] M.M. Gromiha, S. Selvaraj, Influence of medium and long-range interactions in different structural classes of globular proteins. J. Biol. Phys. 23 (1997) 151–162.
- [17] M.M. Gromiha, S. Selvaraj, Protein secondary structure prediction in different structural classes. Protein Eng. 11 (1998) 249–251.
- [18] M.M. Gromiha, S. Selvaraj, Influence of medium and long-range interactions in $(\alpha/\beta)_8$ barrel proteins. J. Biol. Phys. 23 (1997) 209–217.
- [19] S. Selvaraj, M.M. Gromiha, Importance of long-range interactions in $(\alpha/\beta)_8$ barrel fold. J. Protein Chem. 17 (1998) 691–697.
- [20] F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, et al., The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112 (1977) 535–542.
- [21] E. Abola, F.C. Bernstein, S.H. Bryant, T.F. Koetzle, J. Weng, Protein Data Bank, in: F.H. Allen, G. Bergerhoft, R. Sievers editors. Crystallographic Databases Information Content, Software Systems, Scientific Applications, 1987, pp. 107–132.
- [22] T.J.P. Hubbard, B. Ailey, S.E. Brenner, A.G. Murzin, C. Chothia, SCOP: a structural classification of proteins database. Nucl. Acids Res. 27 (1999) 254–256.
- [23] C.A. Orengo, F.M.G. Pearl, J.E. Bray, et al., The CATH database provides insights into protein structure/function relationships. Nucl. Acids Res. 27 (1999) 275–279.
- [24] W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22 (1983) 2577–2637.
- [25] S. Selvaraj, M.M. Gromiha, An Analysis of the amino acid clustering pattern in $(\alpha/\beta)_8$ barrel proteins. J. Protein Chem. 17 (1998) 407–415.
- [26] P. Manavalan, P.K. Ponnuswamy, A study of the pre-

- ferred environment of amino acid residues in globular proteins. Arch. Biochem. Biophys. 184 (1977) 476–487.
- [27] P. Manavalan, P.K. Ponnuswamy, Hydrophobic character of amino acid residues in globular proteins. Nature 275 (1978) 673–674.
- [28] P.K. Ponnuswamy, Hydrophobic characteristics of folded proteins. Prog. Biophys. Mol. Biol. 59 (1993) 57–103.
- [29] Z. Gugolya, Z. Dosztanyi, I. Simon, Interresidue interactions in protein classes. Proteins 27 (1997) 360–366.
- [30] P.K. Ponnuswamy, M.M. Gromiha, Prediction of transmembrane helices from hydrophobic characteristics of proteins. Int. J. Pept. Protein Res. 42 (1993) 326–341.
- [31] M.M. Gromiha, P.K. Ponnuswamy, Prediction of protein secondary structures from their hydrophobic characteristics. Int. J. Pept. Protein Res. 45 (1995) 225–240.
- [32] G.D. Fasman, The development of the prediction of protein structure, in G.D. Fasman editor. Prediction of Protein Structure and Principles of Protein Conformation, Plenum Press, New York, 1989, pp. 193–316.
- [33] D.J. Barlow, J.M. Thornton, Ion-pairs in proteins. J. Mol. Biol. 168 (1983) 867–885.